Перевод: со всех языков на английский

с английского на все языки

a work on the subject of the Napoleonic Wars

  • 1 Lavoisier, Antoine Laurent

    SUBJECT AREA: Chemical technology
    [br]
    b. 26 August 1743 Paris, France
    d. 8 May 1794 Paris, France
    [br]
    French founder of the modern science of chemistry.
    [br]
    As well as receiving a formal education in law and literature, Lavoisier studied science under some of the leading figures of the day. This proved to be an ideal formation of the man in whom "man of science" and "public servant" were so intimately combined. His early work towards the first geological map of France and on the water supply of Paris helped to win him election to the Royal Academy of Sciences in 1768 at the youthful age of 25. In the same year he used some of his private income to buy a part-share in the "tax farm", a private company which leased from the Government the right to collect certain indirect taxes.
    In 1772 Lavoisier began his researches into the related phenomena of combustion, respiration and the calcination or oxidation of metals. This culminated in the early 1780s in the overthrow of the prevailing theory, based on an imponderable combustion principle called "phlogiston", and the substitution of the modern explanation of these processes. At the same time, understanding of the nature of acids, bases and salts was placed on a sounder footing. More important, Lavoisier defined a chemical element in its modern sense and showed how it should be applied by drawing up the first modern list of the chemical elements. With the revolution in chemistry initiated by Lavoisier, chemists could begin to understand correctly the fundamental processes of their science. This understanding was the foundationo of the astonishing advance in scientific and industrial chemistry that has taken place since then. As an academician, Lavoisier was paid by the Government to carry out investigations into a wide variety of practical questions with a chemical bias, such as the manufacture of starch and the distillation of phosphorus. In 1775 Louis XVI ordered the setting up of the Gunpowder Commission to improve the supply and quality of gunpowder, deficiencies in which had hampered France's war efforts. Lavoisier was a member of the Commission and, as usual, took the leading part, drawing up its report and supervising its implementation. As a result, the industry became profitable, output increased so that France could even export powder, and the range of the powder increased by two-thirds. This was a material factor in France's war effort in the Revolution and the Napoleonic wars.
    As if his chemical researches and official duties were not enough, Lavoisier began to apply his scientific principles to agriculture when he purchased an estate at Frechines, near Blois. After ten years' work on his experimental farm there, Lavoisier was able to describe his results in the memoir "Results of some agricultural experiments and reflections on their relation to political economy" (Paris, 1788), which holds historic importance in agriculture and economics. In spite of his services to the nation and to humanity, his association with the tax farm was to have tragic consequences: during the reign of terror in 1794 the Revolutionaries consigned to the guillotine all the tax farmers, including Lavoisier.
    [br]
    Bibliography
    1862–93, Oeuvres de Lavoisier, Vols I–IV, ed. J.B.A.Dumas; Vols V–VI, ed. E.Grimaux, Paris (Lavoisier's collected works).
    Further Reading
    D.I.Duveen and H.S.Klickstein, 1954, A Bibliography of the Works of Antoine Laurent Lavoisier 1743–1794, London: William Dawson (contains valuable biographical material).
    D.McKie, 1952, Antoine Lavoisier, Scientist, Economist, Social Reformer, London: Constable (the best modern, general biography).
    H.Guerlac, 1975, Antoine Laurent Lavoisier, Chemist and Revolutionary, New York: Charles Scribner's Sons (a more recent work).
    LRD

    Biographical history of technology > Lavoisier, Antoine Laurent

  • 2 Blenkinsop, John

    [br]
    b. 1783 near Newcastle upon Tyne, England
    d. 22 January 1831 Leeds, England
    [br]
    English coal-mine manager who made the first successful commercial use of steam locomotives.
    [br]
    In 1808 Blenkinsop became agent to J.C.Brandling, MP, owner of Middleton Colliery, from which coal was carried to Leeds over the Middle-ton Waggonway. This had been built by Brandling's ancestor Charles Brandling, who in 1758 obtained an Act of Parliament to establish agreements with owners of land over which the wagon way was to pass. That was the first railway Act of Parliament.
    By 1808 horse haulage was becoming uneconomic because the price of fodder had increased due to the Napoleonic wars. Brandling probably saw the locomotive Catch-Me- Who-Can demonstrated by Richard Trevithick. In 1811 Blenkinsop patented drive by cog-wheel and rack rail, the power to be provided preferably by a steam engine. His object was to produce a locomotive able to haul a substantial load, while remaining light enough to minimize damage to rails made from cast iron which, though brittle, was at that date the strongest material from which rails could be made. The wagonway, formerly of wood, was relaid with iron-edge rails; along one side rails cast with rack teeth were laid beside the running surface. Locomotives incorporating Blenkinsop's cog-wheel drive were designed by Matthew Murray and built by Fenton Murray \& Wood. The design was developed from Trevithick's to include two cylinders, for easier starting and smoother running. The first locomotive was given its first public trial on 24 June 1812, when it successfully hauled eight wagons of coal, on to which fifty spectators climbed. Locomotives of this type entered regular service later in the summer and proved able to haul loads of 110 tons; Trevithick's locomotive of 1804 had managed 25 tons.
    Blenkinsop-type locomotives were introduced elsewhere in Britain and in Europe, and those upon the Kenton \& Coxlodge Wagonway, near Newcastle upon Tyne, were observed by George Stephenson. The Middleton locomotives remained at work until 1835.
    [br]
    Bibliography
    10 April, 1811, "Certain Mechanical Means by which the Conveyance of Coals, Minerals and Other Articles is Facilitated….", British patent no. 3,431.
    Further Reading
    J.Bushell, 1975, The World's Oldest Railway, Sheffield: Turntable (describes Blenkinsop's work).
    E.K.Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds.
    C.von Oeynhausen and H.von Dechen, 1971, Railways in England 1826 and 1827, Cambridge: W.Heffer \& Sons.
    PJGR

    Biographical history of technology > Blenkinsop, John

  • 3 Carnot, Nicolas Léonard Sadi

    [br]
    b. 1 June 1796 Paris, France
    d. 24 August 1831 Paris, France
    [br]
    French laid the foundations for modern thermodynamics through his book Réflexions sur la puissance motrice du feu when he stated that the efficiency of an engine depended on the working substance and the temperature drop between the incoming and outgoing steam.
    [br]
    Sadi was the eldest son of Lazare Carnot, who was prominent as one of Napoleon's military and civil advisers. Sadi was born in the Palais du Petit Luxembourg and grew up during the Napoleonic wars. He was tutored by his father until in 1812, at the minimum age of 16, he entered the Ecole Polytechnique to study stress analysis, mechanics, descriptive geometry and chemistry. He organized the students to fight against the allies at Vincennes in 1814. He left the Polytechnique that October and went to the Ecole du Génie at Metz as a student second lieutenant. While there, he wrote several scientific papers, but on the Restoration in 1815 he was regarded with suspicion because of the support his father had given Napoleon. In 1816, on completion of his studies, Sadi became a second lieutenant in the Metz engineering regiment and spent his time in garrison duty, drawing up plans of fortifications. He seized the chance to escape from this dull routine in 1819 through an appointment to the army general staff corps in Paris, where he took leave of absence on half pay and began further courses of study at the Sorbonne, Collège de France, Ecole des Mines and the Conservatoire des Arts et Métiers. He was inter-ested in industrial development, political economy, tax reform and the fine arts.
    It was not until 1821 that he began to concentrate on the steam-engine, and he soon proposed his early form of the Carnot cycle. He sought to find a general solution to cover all types of steam-engine, and reduced their operation to three basic stages: an isothermal expansion as the steam entered the cylinder; an adiabatic expansion; and an isothermal compression in the condenser. In 1824 he published his Réflexions sur la puissance motrice du feu, which was well received at the time but quickly forgotten. In it he accepted the caloric theory of heat but pointed out the impossibility of perpetual motion. His main contribution to a correct understanding of a heat engine, however, lay in his suggestion that power can be produced only where there exists a temperature difference due "not to an actual consumption of caloric but to its transportation from a warm body to a cold body". He used the analogy of a water-wheel with the water falling around its circumference. He proposed the true Carnot cycle with the addition of a final adiabatic compression in which motive power was con sumed to heat the gas to its original incoming temperature and so closed the cycle. He realized the importance of beginning with the temperature of the fire and not the steam in the boiler. These ideas were not taken up in the study of thermodynartiics until after Sadi's death when B.P.E.Clapeyron discovered his book in 1834.
    In 1824 Sadi was recalled to military service as a staff captain, but he resigned in 1828 to devote his time to physics and economics. He continued his work on steam-engines and began to develop a kinetic theory of heat. In 1831 he was investigating the physical properties of gases and vapours, especially the relationship between temperature and pressure. In June 1832 he contracted scarlet fever, which was followed by "brain fever". He made a partial recovery, but that August he fell victim to a cholera epidemic to which he quickly succumbed.
    [br]
    Bibliography
    1824, Réflexions sur la puissance motrice du feu; pub. 1960, trans. R.H.Thurston, New York: Dover Publications; pub. 1978, trans. Robert Fox, Paris (full biographical accounts are provided in the introductions of the translated editions).
    Further Reading
    Dictionary of Scientific Biography, 1971, Vol. III, New York: C.Scribner's Sons. T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.
    Black.
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    D.S.L.Cardwell, 1971, from Watt to Clausius. The Rise of Thermodynamics in the Early Industrial Age, London: Heinemann (discusses Carnot's theories of heat).
    RLH

    Biographical history of technology > Carnot, Nicolas Léonard Sadi

  • 4 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

  • 5 тема

    I жен.
    subject, theme; (разговора, статьи тж.) topic; theme муз.

    отклониться от темы — to wander/deviate from the subject; to digress

    развивать тему — to develop a subject, to elaborate upon a subject

    II жен.; лингв.
    theme, foundation

    Русско-английский словарь по общей лексике > тема

См. также в других словарях:

  • Napoleonic Wars — Top: Bat …   Wikipedia

  • The Irish (in Countries Other Than Ireland) —     The Irish (in countries other than Ireland)     † Catholic Encyclopedia ► The Irish (in countries other than Ireland)     I. IN THE UNITED STATES     Who were the first Irish to land on the American continent and the time of their arrival are …   Catholic encyclopedia

  • Napoleonic code — The Napoleonic Code, or Code Napoléon (originally called the Code civil des Français ) is the French civil code, established under Napoléon I. It was drafted rapidly by a commission of four eminent jurists and entered into force on March 21, 1804 …   Wikipedia

  • Maritime history of the United Kingdom — The Maritime history of the United Kingdom involves events including shipping, ports, navigation, and seamen, as well as marine sciences, exploration, trade, and maritime themes in the arts from the creation of the kingdom of Great Britain[1] as… …   Wikipedia

  • History of the Caribbean — The history of the Caribbean reveals the significant role the region played in the colonial struggles of the European powers since the fifteenth century. In the twentieth century the Caribbean was again important during World War II, in the… …   Wikipedia

  • History of the British Army — The history of the British Army spans over three and a half centuries and numerous European wars, colonial wars and world wars. From the early 19th century until 1914, the United Kingdom was the greatest economic and Imperial Power in the world,… …   Wikipedia

  • History of the Royal Marines — The Corps of Royal Marines, the infantry land fighting element of the United Kingdom s Royal Navy, was formed as part of the Naval Service in 1755. However, it can trace its origins back as far as 1664, when English soldiers first went to sea to… …   Wikipedia

  • Culture of the Indian Ocean Islands — The culture of the Indian Ocean islands reflects the ethnic diversity, history, politics, music, dance, food, drink, arts, sports and international influences in that region. The area includes Zanzibar (Unguja and Pemba Island), Madagascar,… …   Wikipedia

  • History of the Roman Catholic Church — The History of the Catholic Church from apostolic times covers a period of nearly 2,000 years, [August Franzen, Kleine Kirchengeschichte Neubearbeitung, Herder,Freiburg,1988, p.11] making it the world s oldest and largest institution. It dates… …   Wikipedia

  • History of the world — The history of the world [Williams, H. S. (1904). The historians history of the world; a comprehensive narrative of the rise and development of nations as recorded by over two thousand of the great writers of all ages. New York: The Outlook… …   Wikipedia

  • The Third of May 1808 — Infobox Painting| title=The Third of May 1808 artist=Francisco Goya year=1814 type=Oil on canvas height=266 width=375 city=Madrid museum=Museo del Prado The Third of May 1808 (also known as es. El tres de mayo de 1808 en Madrid , or es. Los… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»